Part 2: Advanced Integration Techniques

\(\newcommand{\sech}{\operatorname{sech}}\) \(\newcommand{\csch}{\operatorname{csch}}\) \(\newcommand{\inverse}[1]{#1^{\leftarrow}}\)


2.1 Integration by Substitution

Textbook References

2.1.1 Substitution and the Chain Rule

2.1.2 Substitution in Definite Integrals

2.1.3 Antiderivatives of Trigonometric Functions

Exercises for 2.1

  1. Find \(\int 3(3x-5)^3\,dx\).
  2. Find \(\int 4e^{r-7}\,dr\).
  3. Find \(\int 4v\sech^2(2v^2+1)\,dv\).
  4. Find \(\int \frac{2e^x}{e^x+3}\,dx\).
  5. Find \(\int 2t^3\sqrt{t^2+1}\,dt\). (Hint: \(2t^3=2t\cdot t^2\).)
  6. Find \(\int \frac{2(\ln s)^3}{s}\,ds\).
  7. Find \(\int \frac{3\sqrt{x}}{2(x^{3/2}+2)^2}\,dx\).
  8. Find \(\int \frac{\cos(1/y)}{y^2}\,dy\).
  9. Compute \(\int_0^{\pi/12} \sec(3\theta)\tan(3\theta)\,d\theta\).
  10. Compute \(\int_1^2 (6x+3)(x^2+x)^2\,dx\).
  11. Compute \(\int_{\ln 3}^{\ln 8}e^z\sqrt{1+e^z}\,dz\).
  12. Compute \(\int_e^{e^2}\frac{1}{x\ln x}\,dx\).
  13. Use Substitution to find \(\int\cot\theta\,d\theta\).
  14. Multiply by \(\frac{\sec x+\tan x}{\sec x+\tan x}\) and use Substitution to prove \(\int\sec x\,dx=\ln|\sec x+\tan x|+C\).
  15. (Quiz) Find \(\int 3t^5(t^3+3)^2\,dt\).
    • \(\frac{1}{4}t^4-4t^3+C\)
    • \(\frac{1}{4}(t^3+3)^4-(t^3+3)^3+C\)
    • \(\frac{1}{2}(t^3+3)^2+4(t^3+3)^3+C\)
  16. (Quiz) Evaluate \(\int_0^1 x^2e^{2x^3}\,dx\).
    • \(\frac{1}{6}e^2-\frac{1}{6}\)
    • \(\frac{1}{4}e^2-\frac{1}{4}e\)
    • \(\frac{1}{3}e-\frac{1}{3}\)

Solutions 1-8

Solutions 9-16


2.2 Integration by Parts

Textbook References

2.2.1 Parts and the Product Rule

2.2.2 Integrating Definite Integrals by Parts

2.2.3 Antiderivatives of Logarithms

Exercises for 2.2

  1. Find \(\int 3x\cosh(x)\,dx\).
  2. Find \(\int te^{2t}\,dt\).
  3. Find \(\int y^2\sin(y)\,dy\).
  4. Find \(\int 4x\sec^2(x)\,dx\). (Hint: recall \(\int\tan\theta\,d\theta=\ln|\sec\theta|+C\).)
  5. Find \(\int e^{3w}\sinh(w)\,dw\).
  6. Find \(\int \sin(2x)\cos(4x)\,dx\).
  7. Compute \(\int_1^e x\ln x\,dx\).
  8. (Optional) Find \(\int x^4e^x\,dx\).
  9. (Optional) Prove \( \int \cos^{n+2} x\,dx = \frac{\cos^{n+1} x\sin x}{n+2}+\frac{n+1}{n+2}\int\cos^n x\,dx \). (Hint: take the derivative of both sides.)
  10. (Optional) Find \(\int \cos^4 x\,dx\) using the above formula.
  11. (Quiz) Find \(\int x\cosh x\,dx\).
    • \(x\sinh x-\cosh x+C\)
    • \(x^2\sinh x+2\cosh x+C\)
    • \(x\cosh x+3x\sinh x+C\)
  12. (Quiz) Find \(\int e^\theta\sin\theta\,d\theta\).
    • \(\frac{e^\theta\sin\theta+e^\theta\cos\theta}{3}+C\)
    • \(-\frac{e^\theta\cos\theta}{4}+C\)
    • \(\frac{e^\theta\sin\theta-e^\theta\cos\theta}{2}+C\)

Solutions 1-5

Solutions 6-12


2.3 Trigonometric Integrals

Textbook References

2.3.1 Integrating Products of Sine and Cosine

2.3.2 Integrating Products of Secant and Tangent

Exercises for 2.3

  1. Find \(\int\sin^4 x\cos^3 x\,dx\).
  2. Find \(\int\sin^5 \theta\cos^2 \theta\,d\theta\).
  3. Find \(\int\sin^2 x\,dx\).
  4. Find \(\int\cos^4 y\,dy\).
  5. Find \(\int\tan^2 t\sec^4 t\,dt\).
  6. (Optional) Use integration by parts with cycling to prove \( \int\sec^3 x\,dx = \frac{1}{2}\sec x\tan x+\frac{1}{2}\ln|\sec x+\tan x|+C \). (Hint: \(\int\sec x\tan^2 x\,dx=\int\sec x(\sec^2 x-1)\,dx\).)

Solutions


2.4 Trigonometric Substitution

Textbook References

2.4.1 Substituting for \(a+bx^2\)

2.4.2 Substituting for \(a-bx^2\)

2.4.3 Substituting for \(bx^2-a\)

2.4.4 Using Inverse Trigonometric Antiderivatives

Exercises for 2.4

  1. Find \(\int\frac{2}{\sqrt{1+4z^2}}\,dz\). (Recall \(\int\sec\theta\,d\theta=\ln|\sec\theta+\tan\theta|+C\).)
  2. Find \(\int\frac{x^3}{9+x^2}\,dx\). (Recall \(\int\tan\theta\,d\theta=\ln|\sec\theta|+C\).)
  3. Find \(\int \frac{4}{(1-y^2)^{3/2}}\,dy\).
  4. Find \(\int\frac{2x^3}{\sqrt{9-x^2}}\,dx\).
  5. Prove \(\int\frac{1}{\sqrt{1-x^2}}\,dx=\inverse\sin x+C\).
  6. Find \(\int\frac{\sqrt{x^2-16}}{x}\,dx\) where \(x\geq 4\).
  7. Find \(\int\frac{1}{\sqrt{4t^2-1}}\,dt\) where \(t>\frac{1}{2}\).
  8. Find \(\int\frac{2}{\sqrt{1-4x^2}}\,dx\) without a trigonometric substitution.
  9. (Optional) Find \(\int\frac{2}{4+9x^2}\,dx\) without a trigonometric substitution.
  10. (Quiz) Find \(\int \frac{1}{\sqrt{9+y^2}}\,dy\). (Recall \(\int\sec\theta\,d\theta=\ln|\sec\theta+\tan\theta|+C\).)
    • \(\ln|\sqrt{1+\frac{1}{9}y^2}+\frac{y}{3}|+C\).
    • \(\sin^{\leftarrow}(\frac{y}{9})+C\)
    • \(\ln(\sqrt{9+\frac{1}{9}y^2})+C\)
    • (Note: the quiz given in class had a typo: \(\int \frac{1}{\sqrt{9-y^2}}\,dy\), making \(\inverse\sin(\frac{y}{3})+C\) or “None of the Above” the correct solution. The full solution below is for the version without a typo.)
  11. (Quiz) Find \(\int \frac{1}{x\sqrt{4x^2-1}}\,dy\) where \(x>\frac{1}{2}\).
    • \(\tan^{\leftarrow}(4x^2-1)+\ln|x|+C\)
    • \(\sec^{\leftarrow}(2x)+C\)
    • \(\ln|x+\sqrt{4x^2-1}|+C\)

Solutions 1-5

Solutions 6-11


2.5 Integrating with Partial Fractions

Textbook References

2.5.1 Rational Functions and Partial Fractions

2.5.2 Integrating Partial Fractions

Exercises for 2.5

  1. Expand \(\frac{4x^2+16x+17}{(x+2)^3}\) using partial fractions.
  2. Expand \(\frac{-y^2+2y-4}{(y^2+4)^2}\) using partial fractions.
  3. Expand \(\frac{3r^3+r^2+3}{r^4+3r^2}\) using partial fractions.
  4. Find \(\int\frac{3z+2}{z^2+2z+1}\,dz\).
  5. Find \(\int\frac{3x^2+35}{x^3+5x}\,dx\).
  6. Find \(\int\frac{2v^3+4v^2+4v+2}{v^2+2v}\,dv\).
  7. (Optional) Find \(\int\frac{2x^3+6x^2+4x+2}{(x+1)^2(x^2+1)}\,dx\).
  8. (Quiz) Which of the following describes the expansion of \(\frac{f(t)}{(t+1)^2(t^2+9)}\) using partial fractions? (Assume \(f(t)\) is a polynomial of degree less than 4.)
    • \(\frac{At+B}{t+1}+\frac{C}{t^2+1}+\frac{D}{t^2+9}\).
    • \(\frac{A}{t}+\frac{Bt+C}{(t+1)^2}+\frac{D}{t+3}+\frac{E}{t^2+9}\)
    • \(\frac{A}{t+1}+\frac{B}{(t+1)^2}+\frac{Ct+D}{t^2+9}\)
  9. (Quiz) Find \(\int \frac{-x^2+6x-3}{(x+3)(x^2+1)}\,dx\).
    • \(-3\ln|x+3|+\ln|x^2+1|+C\)
    • \(\frac{3}{x^2+9}+2\ln(x^2+1)+C\)
    • \(2\ln(x+3)-\tan^{\leftarrow}(x^2+1)+C\)

Solutions 1-4

Solutions 5-9


2.6 Strategies for Integration

Textbook References

2.6.1 Identifying Appropriate Integration Strategies

Exercises for 2.6

  1. Find \(\int(x^2-1)(x^2+1)\,dx\).
  2. Find \(\int\frac{1}{\sqrt{9+z^2}}\,dz\). (Recall \(\int\sec\theta\,d\theta=\ln|\sec\theta+\tan\theta|+C\).)
  3. Find \(\int 6y^2e^{y^3}\,dy\).
  4. Find \(\int 3x\sin(4x)\,dx\).
  5. Find \(\int\sec^3 \theta\tan^3 \theta\,d\theta\).
  6. Find \(\int\frac{5x-5}{x^2-3x-4}\,dx\).
  7. Find \(\int \frac{3}{2}\sqrt{t}-\frac{1}{t\sqrt{t^2-1}}\,dt\).
  8. (Optional) Find \(\int e^x\sqrt{1-e^{2x}}\,dx\). (Hint: \(\sin(2\theta)=2\sin\theta\cos\theta\).)

Solutions


Review Exercises

The exercises are now located with their respective notes.