Part 1: Functions Defined by Derivatives and Integrals


1.1 Logarithms and Exponential Functions

Textbook References

1.1.1 The Natural Logarithm

1.1.2 The Natural Number and Natural Exponential Function

1.1.3 General Logarithms and Exponential Functions

Exercises for 1.1

  1. Use the definition \( \ln x=\int_1^x \frac{1}{t}\,dt \) to prove the property \( \ln(x^p) = p\ln x \) for \(x>0\) and \(p\in\mathbb Q\). (Hint: start by showing that both sides share the same derivative.)
  2. Find \(\int \frac{6}{x^3}+\frac{2}{x}-3x\,dx\).
  3. Find \(\int \frac{6x^4-x^2+4}{2x^3}\,dx\).
  4. We saw that \(\frac{d}{dx}[e^x]=e^x\). Describe infinitely many other functions \(f(x)\) such that \(f’(x)=f(x)\).
  5. Find \(\frac{d}{dx}[\frac{1}{x}+3e^x]\).
  6. Prove the following derivative formulas: \( \frac{d}{dx}[\log_b x]=\frac{1}{x\ln b} \) and \( \frac{d}{dx}[a^x]=a^x \ln a \).
  7. (Quiz) Integrate \(\int 3x^4+3e^x-\frac{4}{x}\,dx\).
    • \(12x^3-3e^x+4\ln|x|+C\)
    • \(\frac{3}{5}x^5+3e^x-4\ln|x|+C\)
    • \(\frac{3}{4}x^5+3xe^{x-1}-\frac{4}{x^2}+C\)
    • None of the above
  8. (Quiz) Differentiate \(f(x)=\ln(x^2)+e^{x^3}\).
    • \(f’(x)=\frac{2}{x}+3x^2e^{x^3}\)
    • \(f’(x)=2x\ln(x^2)+x^3e^{x^3-1}+C\)
    • \(f’(x)=\frac{2x}{x^2}+e^{x^3}\)
    • None of the above

Solutions


1.2 Trigonometric Functions

Textbook References

1.2.1 Sine and Cosine

1.2.2 Geometric Properties

Exercises for 1.2

  1. Show that \(f(x)=\cos(x)\) is a solution to the differential equation \(f^{\prime\prime}(x)=-f(x),f’(0)=0,f(0)=1\).
  2. Show that \(f(x)=\sin(3x)\) is a solution to the differential equation \(f^{\prime\prime}(x)=-9f(x),f’(0)=3,f(0)=0\).
  3. Find a solution to the differential equation \(f^{\prime\prime}(x)=-f(x),f’(0)=0,f(0)=4\).
  4. Prove that if \( x\) is an angle where \(\sin x = -\frac{5}{13}\), then \(\cos x\) is either \(\frac{12}{13}\) or \(-\frac{12}{13}\). (Hint: use the Pythagorean identity.)
  5. (Optional) Find a solution to the differential equation \(f^{\prime\prime}(x)=-4f(x),f’(0)=6,f(0)=0\).
  6. (Optional) Prove that \(-1\leq\sin x\leq 1\) and \(-1\leq\cos x\leq 1\). (Hint: use the Pythagorean identity.)

Solutions


1.3 Hyperbolic Functions

Textbook References

1.3.1 Hyperbolic Sine and Cosine

\(\newcommand{\sech}{\mathrm{sech}\,}\) \(\newcommand{\csch}{\mathrm{csch}\,}\)

1.3.2 Other Hyperbolic Functions

1.3.3 Derivatives and Integrals of Hyperbolic Functions

Exercises for 1.3

  1. Evaluate \(\sinh(\ln 6)\).
  2. Prove that \(\cosh (2x) = \cosh^2 x + \sinh^2 x\).
  3. Prove that \(\cosh^2 x - \sinh^2 x = 1\).
  4. Evaluate \(\tanh(\ln 3)\).
  5. Simplify \(\sinh(x)\coth(x)\cosh(x)-\frac{1}{\csch^2(x)}\). (Hint: convert everything to \(\sinh x\) and \(\cosh x\).)
  6. Prove that \(\frac{d}{dx}[\sinh x] = \cosh x\).
  7. Prove that \(\frac{d}{dx}[\sech x] = -\sech x\tanh x\). (Hint: use the fact that \(\frac{d}{dx}[\cosh x] = \sinh x\).)
  8. Compute \(\frac{d}{dx}[\tanh(3x)-\sech(\ln x)]\).
  9. Find \(\int 3\csch x\coth x - 2\sinh x\,dx\).
  10. (Optional) Let \(\sinh^{\leftarrow}(x)\) be the inverse function of \(\sinh(x)\). Use the facts \(\frac{d}{dx}[f^{\leftarrow}(x)]=\frac{1}{f’(f^{\leftarrow}(x))}\) and \(\cosh^2 x-\sinh^2 x = 1\) to prove that \(\frac{d}{dx}[\sinh^{\leftarrow}(x)]=\frac{1}{\sqrt{1+x^2}}\).
  11. (Optional) Prove that \(\sinh^{\leftarrow}(x)=\ln(\sqrt{x^2+1}+x)\).
  12. (Quiz) Evaluate \(\cosh(\ln 2)\).
    • \(\frac{3}{5}\)
    • \(\frac{2}{3}\)
    • \(\frac{5}{4}\)
  13. (Quiz) Differentiate \(f(x)=\tanh(x^2)-\cosh(2x+1)\).
    • \(f’(x)=-\sech(x^2)\tanh(x^2)+\sinh(2x+1)+2\)
    • \(f’(x)=2x\sech^2(x^2)-2\sinh(2x+1)\)
    • \(f’(x)=\frac{1}{1+x^4}+2\sinh(2x+1)\)

Solutions 1-11 Solutions 12,13

Review Exercises

The exercises are now located with their respective notes.