Part 6: Power Series


\( \newcommand{\<}{\langle} \newcommand{\>}{\rangle} \)

6.1 Power Series

Textbook References

6.1.1 Definition

6.1.2 Domains of Power Series

Exercises for 6.1

  1. Expand the first four terms of the power series \(\sum_{m=0}^\infty 3^{m+1}x^m\).
  2. Expand the first four terms of the power series \(\sum_{k=1}^\infty \frac{(-x)^k}{k+1}\).
  3. Expand the first four terms of the power series \(\sum_{n=0}^\infty (-1)^n\frac{x^{2n+1}}{(2n+1)!}\).
  4. Simplify \(q(x)=\sum_{n=1}^\infty (1-x)^n=(1-x)+(1-x)^2+(1-x)^3+\dots\) with domain \(|1-x|<1\).
  5. Simplify \(g(x)=\sum_{j=0}^\infty (2x)^{2j+1}= 2x+8x^3+32x^5+128x^7+\dots\) with domain \(|x|<\frac{1}{2}\).
  6. Find the domain of \(z(x)=\sum_{n=2}^\infty(-1)^n\frac{x^n}{2n}= \frac{x^2}{4}-\frac{x^3}{6}+\frac{x^4}{8}-\frac{x^5}{10}+\dots\).
  7. Find the domain of \(f(x)=\sum_{i=0}^\infty\frac{(3x)^i}{(2i)!}= 1+\frac{3}{2}x+\frac{9}{24}x^2+\dots\).
  8. Find the domain of \(h(x)=\sum_{k=0}^\infty\frac{(x-2)^k}{k^2+1}= 1+\frac{x-2}{2}+\frac{(x-2)^2}{5}+\frac{(x-2)^3}{10}+\dots\).
  9. (OPTIONAL) Find the domain of \(g(x)=\sum_{m=3}^\infty(\frac{1}{m}-\frac{1}{m+1})x^m\).
  10. (QUIZ) Expand the first four terms of the power series \(\sum_{k=0}^\infty \frac{(-x)^{2k+1}}{(2k)!}\).
    • \(1+x^2+\frac{x^3}{8}+\frac{x^5}{15}+\dots\)
    • \(-x-\frac{x^3}{2}-\frac{x^5}{24}-\frac{x^7}{720}-\dots\)
    • \(x-\frac{x^3}{3}+\frac{x^6}{18}-\frac{x^{10}}{27}+\dots\)
  11. (QUIZ) Simplify \(f(x)=\sum_{n=1}^\infty (-x)^{n-1}=1-x+x^2-x^3+\dots\) with domain \(|x|<1\).
    • \(f(x)=\frac{1}{1+x}\)
    • \(f(x)=\frac{2x}{1-x}\)
    • \(f(x)=\frac{1}{x}+2\)
  12. (QUIZ) Find the domain of \(f(x)=\sum_{m=2}^\infty\frac{(-2x)^m}{m}= \frac{4x^2}{2}-\frac{8x^3}{3}+\frac{16x^4}{4}-\frac{32x^5}{5}+\dots\).
    • \(-\frac{1}{2}<x\leq\frac{1}{2}\)
    • \(-1<x<1\)
    • \(0\leq x<2\)

Solutions


6.2 Taylor and Maclaurin Series

6.2.1 Power Series from Functions

6.2.2 Maclaurin Series for \(e^x\), \(\sin x\), \(\cos x\)

6.2.3 Composition, Differentiation, and Integration of Power Series

Exercises for 6.2

  1. Let \(f(x)=\frac{1}{1-x}\) with the domain \(-1<x<1\), and guess a formula for \(f^{(k)}(0)\) by computing its first few terms. Then show that the Maclaurin series generated by \(f\) converges to \(f\).
  2. Let \(g(x)=\frac{3}{x}\) with the domain \(0<x<6\), and guess a formula for \(g^{(k)}(3)\) by computing its first few terms. Then show that the Taylor series generated by \(g\) at \(3\) converges to \(g\).
  3. Show how to generate the Maclaurin series \(\sum_{k=0}^\infty(-1)^k\frac{x^{2k}}{(2k)!}\) for \(\cos x\).
  4. Find the Maclaurin series for \(\sinh x\).
  5. Find a power series converging to \(\frac{x^3}{e^{x^2}}\).
  6. Find a power series converging to \(\frac{1}{x^2+2x+1}\) for \(|x|<1\). (Hint: begin with the power series for \(\frac{1}{1+x}\) and then differentiate term-by-term.)
  7. Find a power series converging to \(\ln|x|\) for \(0<x<2\). (Hint: begin with the power series for \(\frac{1}{1+x}\) and then integrate term-by-term.)
  8. (QUIZ) Generate the Maclaurin Series for \(\cosh x\).
    • \(\sum_{k=0}^\infty(-1)^k\frac{x^{2k+1}}{(2k+1)!}\)
    • \(\sum_{k=0}^\infty\frac{x^{2k}}{(2k)!}\)
    • \(\sum_{k=0}^\infty\frac{x^k}{(k+1)!}\)
  9. (QUIZ) Find a power series converging to \(x\cos x\).
    • \(\sum_{k=0}^\infty(-1)^k\frac{x^{2k+1}}{(2k)!}\)
    • \(\sum_{k=0}^\infty(-1)^k\frac{x^{2k}}{(2k+2)!}\)
    • \(\sum_{k=0}^\infty\frac{x^{2k+2}}{(2k+1)!}\)
  10. (QUIZ) Find a power series converging to \(\frac{d}{dx}[\sin(x^2)]\).
    • \(\sum_{k=0}^\infty\frac{(-x^2)^{4k+3}}{(4k+2)(2k)!}\)
    • \(\sum_{k=0}^\infty\frac{(2k+1)x^{2k+2}}{(2k+1)!}\)
    • \(\sum_{k=0}^\infty(-1)^k\frac{(4k+2)x^{4k+1}}{(2k+1)!}\)

Solutions 1-4

Solutions 5-10


6.3 Convergence of Taylor Series

6.3.1 Taylor’s Formula

6.3.2 Convergence of Taylor and Maclaurin Series

Exercises for 6.3

  1. Use the fact that \(e<3\) and Taylor’s Formula to estimate the value of \(e\) with an error no greater than \(0.001\).
  2. Use Taylor’s Formula to estimate the value of \(\cos(0.1)\) with an error no greater than \(0.0001\).
  3. Use Taylor’s Formula to estimate the value of \(\sin(1)\) with an error no greater than \(0.01\).
  4. Prove that \(\sin(x)=\sum_{k=0}^\infty(-1)^k\frac{x^{2k+1}}{(2k+1)!}\).
  5. Use the fact that \(|\sinh(x_n)|\leq|\cosh(x_n)|\leq\cosh(x)\) for any \(x_n\) between \(0\) and \(x\) to prove that \(\cosh(x)=\sum_{k=0}^\infty\frac{x^{2k}}{(2k)!}\).
  6. Reprove \(\cosh(x)=\sum_{k=0}^\infty\frac{x^{2k}}{(2k)!}\) by using its definition \(\cosh(x)=\frac{1}{2}(e^x+e^{-x})\) along with the Maclaurin series for \(e^x\).
  7. (OPTIONAL) Prove that \(|\sinh(x_n)|\leq|\cosh(x_n)|\leq\cosh(x)\) for any \(x_n\) between \(0\) and \(x\).
  8. (QUIZ) Which of these Maclaurin Series is most appropriate for approximating \(e^{-1/2}=\frac{1}{\sqrt e}\)?
    • \(\sum_{k=0}^\infty(-1)^k\frac{x^{2k+1}}{(2k+1)!}\)
    • \(\sum_{k=0}^\infty(-1)^k\frac{x^{2k}}{(2k)!}\)
    • \(\sum_{k=0}^\infty\frac{x^k}{k!}\)
  9. (QUIZ) Find the error term \(R_n(x)\) from the Taylor Formula for \(e^x\), where \(x_n\) is between \(0\) and \(x\).
    • \(R_n(x)=\frac{x^{n+1}}{n!}\)
    • \(R_n(x)=\frac{e^{x_n}}{(n+1)!}x^{n+1}\)
    • \(R_n(x)=\frac{1}{e^{x_n/2}(n+1)!}x^n\)
  10. (QUIZ) Use Taylor’s Formula to approximate \(e^{-1/2}=\frac{1}{\sqrt e}\) with an error no greater than \(\frac{1}{1000}=0.001\). (Hint: \(-1/2\leq x_n\leq 0\).)
    • \(\frac{1}{\sqrt e}\approx 0.604\)
    • \(\frac{1}{\sqrt e}\approx 0.607\)
    • \(\frac{1}{\sqrt e}\approx 0.609\)

Solutions 1-7

Solutions 8-10