Metrizability in generalized inverse limits

Steven Clontz

2016 March 3rd

Abstract

For the metric arc I = [0, 1] and continuum-valued bonding relation $f \subseteq_{cl} I^2$, the inverse limit $\varprojlim \{I, f, \omega\}$ is the subspace of the countable power I^{ω} containing sequences \vec{x} satisfying $\vec{x}(n) \in f(\vec{x}(n+1))$. A recent trend in continuum theory is to generalize this notion to $\varprojlim \{I, f, L\}$, where L is an arbitrary linear order. When $L = \omega$, the inverse limit is a subspace of the metrizable space I^{ω} ; however, we will show that when L is uncountable, the inverse limit cannot be metrizable unless f is trivial. Furthermore, when L is an uncountable well order, it will be shown that the inverse limit is not even Corson compact.